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Abstract. We derive from general symmetry properties of the hadron electromagnetic interaction, such
as C-invariance and crossing symmetry, the general characteristics of two-photon exchange in electron-
proton elastic scattering. We show that the presence of this mechanism destroys the linearity of the
Rosenbluth separation.

PACS. 25.30.Bf Elastic electron scattering – 13.40.-f Electromagnetic processes and properties – 13.60.-r
Photon and charged-lepton interactions with hadrons – 13.88.+e Polarization in interactions and scattering

1 Introduction

Recent developments in the field of hadron electromag-
netic form factors (FFs) are due to the very precise
and surprising data obtained at the Jefferson Laboratory
(JLab), in ~e+p→ e+~p elastic scattering, based on the po-
larization transfer method [1,2], which show that the elec-
tric and magnetic distributions in the proton are different.
The application of the polarization transfer method,

proposed about 30 years ago [3] has been possible only
recently, as it needs high-intensity polarized beams, large
solid-angle spectrometers and advanced techniques of po-
larimetry in the GeV range. Experiments have been per-
formed at JLab up to Q2 = 5.6GeV2 and an extension up
to 9GeV2 is in preparation [4].
The existing data show a discrepancy between the Q2

dependence of the ratio R = µpGEp/GMp of the electric
to the magnetic proton form factors (Q2 is the momen-
tum transfer squared, µp = 2.79 is the proton magnetic
moment), whether derived with the standard Rosenbluth
separation [5] or with the polarization method.
Therefore a careful experimental and theoretical anal-

ysis of this problem is necessary. The important point here
is the calculation of radiative corrections to the differen-
tial cross-section and to polarization observables in elastic
eN scattering. If these corrections are large (in absolute
value) for the differential cross-section [6], in particular
for high resolution experiments, a simplified estimation of
radiative corrections to polarization phenomena [7] shows
that radiative corrections are small for the ratio PL/PT of
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longitudinal to transverse polarization of the proton emit-
ted in the elastic collision of polarized electrons with an
unpolarized proton target.

For this reaction, the one-photon exchange is consid-
ered to be the main mechanism. In the standard calcula-
tions of radiative corrections [6], the two-photon exchange
mechanism is only partially taken into account consider-
ing the special part of the integral (the “box diagrams”),
where one photon carries all the momentum transfer and
the second photon is almost real. This contribution al-
lows to overcome the problem of the “infrared” divergence.
But it has been pointed out [8] that, at large momen-
tum transfer, the role of another mechanism, where the
momentum transfer is shared between the two photons,
can be relatively increased, due to the steep decreasing of
the electromagnetic form factors with Q2. This effect can
eventually become so large that the traditional descrip-
tion of the electron-hadron interaction in terms of electro-
magnetic currents (and electromagnetic form factors) can
become incorrect.

Numerous experimental tests of the validity of the one-
photon mechanism have been done in the past, using dif-
ferent methods: test of the linearity of the Rosenbluth for-
mula for the differential cross-section, comparison of the
e+p and e−p cross-sections, attempts to measure various
T -odd polarization observables, etc.

Note that the two-photon exchange should appear at
smaller Q2 for heavier targets: d, 3He, 4He, because the
corresponding form factors decrease faster with Q2 in
comparison with protons. In [9] the possible effects of
2γ-exchange have been estimated from the precise data on
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the structure function A(Q2), obtained at Jlab in electron
deuteron elastic scattering, up to Q2 = 6GeV2 [10,11].
The possibility of 2γ-corrections has not been excluded
by this analysis, starting from Q2 = 1GeV2, and the ne-
cessity of dedicated experiments was pointed out. From
this kind of consideration, one would expect to observe
the two-photon contribution in eN scattering at larger
momentum transfer, for Q2 ' 10GeV2.

The exact calculation of the 2γ-contribution to the am-
plitude of the e±p→ e±p process requires the knowledge
of the matrix element for the double virtual Compton scat-
tering, γ∗ + p → γ∗ + p, in a large kinematical region of
colliding energy and virtuality of both photons, and can
not be done in a model-independent form.

However general properties of the hadron electromag-
netic interaction, as the C-invariance and the crossing
symmetry, give rigorous prescriptions for different observ-
ables for the elastic scattering of electrons and positrons
by nucleons, in particular for the differential cross-section
and for the proton polarization, induced by polarized elec-
trons. These concrete prescriptions help in identifying a
possible manifestation of the two-photon exchange mech-
anism. For example, an attempt [12] of resolving the dis-
crepancy between the existing data on the ratio R, assum-
ing a linear ε dependence of the elastic cross-section even
in the presence of 2γ-corrections is in contradiction with
the C-invariance of the electromagnetic interaction (ε is
the degree of polarization for the virtual photon).

The purpose of this paper is to derive the correct ε de-
pendence of the 2γ-contribution to the differential cross-
section and to find a “model independent” parametriza-
tion of these additional terms. The experimental test of
the predicted ε dependence of the differential cross-section
will be a signature of the presence of the 2γ-contribution
and allow to estimate its role.

2 Crossing symmetry and C-invariance

The standard expression of the matrix element for elas-
tic eN scattering, in framework of one-photon exchange
mechanism, is

M1 =
e2

Q2
u(k2)γµu(k1)u(p2)

[

F1N

(

Q2
)

γµ −
σµνqν
2m

F2N

(

Q2
)

]

u(p1), (1)

where k1 (p1) and k2 (p2) are the four-momenta of the
initial and final electron (nucleon), m is the nucleon mass,
q = k1 − k2, Q

2 = −q2 > 0. F1N and F2N are the Dirac
and Pauli nucleon electromagnetic form factors, which are
real functions of the variable Q2, in the space-like region
of momentum transfer. The same form factors describe
also the one-photon mechanism for the elastic scattering
of positrons by nucleons. From eq. (1) one can find the
following expression for the differential cross-section (in

the laboratory system (Lab)):

dσ

dΩ e
=σM

[

G2
MN

(

Q2
)

+
ε

τ
G2

EN

(

Q2
)

]

, (2)

τ=
Q2

4m2
, GMN =F1N+F2N , GEN =F1N−τF2N ,

where σM is the Mott cross-section, for the scattering
of unpolarized electrons by a point charge particle (with
spin 1/2), ε is another independent kinematical variable,
which, together with Q2, fully determines the kinematics
of elastic eN scattering and can be written, the limit of
me = 0, as

ε =
1

1 + 2(1 + τ) tan2 θe

2

, (3)

where θe is the electron scattering angle in Lab system.
Therefore 0(θe = π) ≤ ε ≤ 1(θe = 00).
If one takes into account the two-photon mechanism,

the expressions of the matrix element, eq. (1), and of the
differential cross section, eq. (2), are essentially modified.
It requires, first of all, a generalization of the spin

structure of the matrix element, which can be done, in
analogy with elastic np scattering [13], using the general
properties of the electron-hadron interaction, such as the
P -invariance and the relativistic invariance. Taking into
account the identity of the initial and final states and the
T -invariance of the electromagnetic interaction, the pro-
cesses e±N → e±N , in which four particles with spin 1/2
participate, are characterized by six independent products
of four-spinors, describing the initial and final fermions.
The corresponding (model-independent) parametrization
of the matrix element can be done in many different but
equivalent forms, in terms of six invariant complex am-
plitudes, Ai(s,Q

2), i = 1–6, which are functions of two
independent variables, and s = (k + p1)

2 is the square of
the total energy of the colliding particles. In the physical
region of the reaction e±N → e±N the conditions: Q2 ≥ 0
and s ≥ (m+me)

2 ' m2, apply.
Previously, another set of variables, ε and Q2, which

is equivalent to s and Q2 (in Lab system) was considered.
The variables ε and Q2 are well adapted to the description
of the properties of one-photon exchange for elastic eN -
scattering, because, in this case, only the Q2 dependence
of the form factors has a dynamical origin, whereas the
linear ε dependence in eq. (2) is a trivial consequence of the
one-photon mechanism. On the other hand, the variables s
and Q2 are better suited to the analysis of the implications
from crossing symmetry1.
The conservation of the lepton helicity, which is a

general property of the electromagnetic interaction in
electron-hadron scattering at high electron energies, re-
duces the number of invariant amplitudes for elastic eN -
scattering, in general complex functions of s and Q2, from
six to three.

1 The concept of crossing symmetry was introduced by
M. Gell-Mann and M.L. Goldberger [14], and was successfully
applied not only in QED, but in the analysis of different pro-
cesses, induced by the strong and electromagnetic interaction.
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Therefore we can write the following general
parametrization of the spin structure of the matrix el-
ement for elastic eN -scattering, following the formalism
of [13]

M=
e2

Q2
u(k2)γµu(k1)u(p2)

[

A1

(

s,Q2
)

γµ −A2

(

s,Q2
)σµνqν
2m

+

A3

(

s,Q2
)

K̂Pµ

]

u(p1) , (4)

K=
k1+k2

2
, P= p1 + p2

2
,

where A1–A3 are the corresponding invariant amplitudes.

In case of one-photon exchange these amplitudes are
related to the nucleon form factors:

A1

(

s,Q2
)

−→ F1N

(

Q2
)

,

A2

(

s,Q2
)

−→ F2N

(

Q2
)

,

A3

(

s,Q2
)

−→ 0.

But in the general case (with multi-photon exchanges) the
situation is more complicated, because

– The amplitudes Ai(s,Q
2), i = 1–3, are complex func-

tions of two independent variables, s and Q2.

– The set of amplitudes A(−)
i (s,Q2) for the process

e−+N → e−+N is different from the set A(+)
i (s,Q2)

of corresponding amplitudes for positron scattering,
e+ + N → e+ + N , which means that the prop-
erties of positron scattering cannot be derived from

A(−)
i (s,Q2), as in case of the one-photon mechanism.

– The connection of the amplitudes Ai(s,Q
2) with the

nucleon electromagnetic form factors, FiN (Q
2), is non-

trivial, because these amplitudes depend on a large
number of different quantities, as, for example, the
form factors of the ∆-excitation, through the ampli-
tudes of the virtual Compton scattering.

In this framework, the simple and transparent phe-
nomenology of electron-hadron physics does not hold any-
more, and in particular, it would be very difficult to ex-
tract information on the internal structure of a hadron in
terms of electromagnetic form factors, which are real func-
tions of one variable, from electron scattering experiments.

In the following text, we will show that the situation
is not so involved, and that even in case of two-photon
exchange, one can still use the formalism of form factors,
if one takes into account the C-invariance of the electro-
magnetic interaction of hadrons.

A deeper analysis of eq. (4) shows that the spin struc-
ture of the amplitudes A1 and A2 corresponds to exchange
by vector particle (in t-channel), whereas the spin struc-
ture for the amplitude A3 corresponds to tensor exchange.
Therefore, in case of e±N elastic scattering, in the 1γ+2γ

approximation, one can write the amplitudes A(±)
1,2 (s,Q

2)

in the following form:

A(±)
1,2

(

s,Q2
)

= ∓F1,2N

(

Q2
)

+∆A(±)
1,2

(

s,Q2
)

,

∆A(+)
1,2

(

s,Q2
)

= ∆A(−)
1,2

(

s,Q2
)

≡ ∆A1,2

(

s,Q2
)

,

A(+)
3

(

s,Q2
)

= A(−)
3

(

s,Q2
)

≡ A3

(

s,Q2
)

,

where the superscript (±) corresponds to e(±) scattering.
The amplitudes ∆A1,2(s,Q

2) and A3(s,Q
2) contain only

the 2γ-contribution, and are equal for e(±) scattering;
∆A1,2 and A3 are of the order of α, α = e2/(4π) = 1/137.
Note that the difference in the spin structure of these

amplitudes, eq. (4), results in specific symmetry properties

with respect to the change x→ −x
(

x =

√

1 + ε

1− ε

)

:

∆A1,2(s,−x) = −∆A1,2(s, x),

A3(s,−x) = +A3(s, x). (5)

The x-odd behavior of ∆A1,2(s, x)-contributions, corre-
sponding to 2γ-exchange with C = +1, results from the
C-odd character of the two vector-like spin structures, γµ
and σµνqν , see eq. (4).
To prove this, let us consider, in addition to

C-invariance, crossing symmetry, which allows to connect
the matrix elements for the cross-channels: e− + p →
e− + p, s-channel, and e+ + e− → p + p, t-channel. The
transformation from s- to t-channel can be realized by the
following substitution:

k2 −→ −k2, p1 −→ −p1

and for the invariant variables:

s = (k1 + p1)
2 −→ (k1 − p1)

2,

Q2 = −(k1 − k2)
2 −→ −(k1 + k2)

2 = −t.
The crossing symmetry states that the same amplitudes
Ai(s,Q

2) describe the two channels, when the variables
s and Q2 scan the physical region of the corresponding
channels. So, if t ≥ 4m2 and −1 ≤ cos θ ≤ 1 (θ is the
angle of the proton production with respect to the electron
three-momentum, in the center of mass (CMS) for e+ +
e− → p+p), the amplitudes Ai(t, cos θ), i = 1–3, describe
the process e+ + e− → p+ p.
The C-invariance of the electromagnetic hadron inter-

action and the corresponding selection rules can be applied
to the annihilation channel and this allows to find specific
properties for one and two photon exchanges. Moreover,
on the basis of the crossing symmetry, it is possible to
transform in a transparent way these properties for the
different observables in ep elastic scattering.
To illustrate this, let us consider firstly the one-photon

mechanism for e+ + e− → p+ p. The conservation of the
total angular momentum J allows only one value, J = 1,
and the quantum numbers of the photon2: J P = 1−,
C = −1.

2 Evidently the exchange by Coulomb virtual photons with
J = 0 is forbidden here, by the gauge invariance of the electro-
magnetic interaction, see eq. (13) and by the C and P selection
rules, as well.
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The selection rules with respect to the C and P invari-
ances allow two states for e+e− (and pp):

S = 1, ` = 0 and S = 1, ` = 2 with J P = 1−, (6)

where S is the total spin and ` is the orbital angular mo-
mentum of the e+ + e− system. As a result the θ depen-
dence of the cross-section for e+ + e− → p + p, in the
one-photon exchange mechanism must have the following
general form:

dσ

dΩ

(

e+ + e− → p+ p
)

' a(t) + b(t) cos2 θ, (7)

where a(t) and b(t) are definite quadratic contributions of
GEp(t) and GMp(t), a(t) and b(t) ≥ 0 at t ≥ 4m2.
Using the kinematical relations

cos2 θ =
1 + ε

1− ε
=
cot2 θe/2

1 + τ
+ 1 (8)

between the variables in the CMS of e+ + e− → p + p
and in the Lab system for e− + p → e− + p, it appears
clearly that the one-photon mechanism generates a linear
ε dependence (or cot2 θe/2) of the Rosenbluth differential
cross-section for elastic ep scattering in Lab system.
Similarly, let us consider the cos θ dependence of the

1γ ⊗ 2γ-interference contribution to the differential cross-
section of e+ + e− → p + p. The spin and parity of the
2γ-states is not fixed, in general, but only a positive value
of C-parity, C(2γ) = +1, is allowed. An infinite number
of states with different quantum numbers (for e++e− and
p+p) can contribute, and their relative role is determined
by the dynamics of the process γ∗+γ∗ → p+p, with both
virtual photons.
But the cos θ dependence of the 1γ ⊗ 2γ interference

contribution to the differential cross-section can be pre-
dicted on the basis of its C-odd nature:

dσ(int)

dΩ

(

e+ + e− → p+ p
)

=

cos θ
[

c0(t) + c1(t) cos
2 θ + c2(t) cos

4 θ + . . .
]

, (9)

where ci(t), i = 0, 1 . . . are real coefficients, which are
functions of t, only. This odd cos θ dependence is essen-
tially different from the even cos θ dependence of the cross-
section for the one-photon approximation, eq. (7).
From C-invariance it follows also that

A3(t,− cos θ) = A3(t,+cos θ),

∆A1,2(t,− cos θ) = −∆A1,2(t,+cos θ), (10)

which is equivalent to the symmetry relations (5).
It is therefore incorrect to approximate the 1γ ⊗ 2γ

interference contribution to the differential cross-section,
eq. (9) by a linear function in cos2 θ, because it is in contra-
diction with the C-invariance of hadronic electromagnetic
interaction.
Using eq. (9), the crossing symmetry allows to predict

the non-trivial ε dependence of the interference contribu-
tion to the differential cross-section of ep scattering, in the

Lab system, ∆σ:

∆σ(e−p→ e−p) ' xf
(

x2, Q2
)

, (11)

f
(

x2, Q2
)

= c0
(

Q2
)

+ c1
(

Q2
)

x2 + c2
(

Q2
)

x4 + . . .

Note that the relation

∆σ
(

e−p→ e−p
)

= −∆σ
(

e+p→ e+p
)

(12)

is correct, with the evident correlation of ∆σ with the
possible deviation of the differential cross-section from a
linear ε dependence.

3 Possible quantum numbers of two-photon
exchange

Let us now analyze the cos θ dependence of the interfer-
ence terms for the lowest possible values J P for the 2γ-
system, in order to get a hint of the relative values of
the coefficients ci(t) in eq. (9). Taking into account the
conservation of the leptonic and the nucleonic electromag-
netic currents, q · L = q · J = 0, the CMS spin structure
of the one-photon amplitude for the annihilation process
e+ + e− → p+ p can be written as

M1 =
e2

t
L · J = −e

2

t
L · J, (13)

with

L =
√
tφ†2
(

σ − k̂σ · k̂
)

φ1 , (14)

J=
√
tχ†2

[

GM (t)(σ−p̂σ · p̂)+ 1√
τ
GE(t)p̂σ · p̂

]

χ1 , (15)

GM (t)=F1(t)+F2(t), GE(t)=F1(t)+τF2(t), τ=
t

4m2
,

(16)

where φ1 and φ2 (χ1 and χ2) are the two-component
spinors of the electron and positron (proton and antipro-

ton), k̂ (p̂) is the unit vector along the three momentum
of the electron (proton) in CMS.
Note that the term GMp(t)− 1√

τ
GEp(t) describes the

pp production with ` = 2. Therefore, at threshold, τ → 1,
where the finite radius of the strong interaction allows
the pp production only in S-state, the following relation:
GEp(t) = GMp(t), t → 4m2 holds and it is the physi-
cal background of this so particular relation between the
nucleon electromagnetic form factors at threshold.
Summing over the polarizations of the pp-system and

averaging over the polarizations of the initial e+e−-
system, one can find with the help of eqs. (14), (15):

|L · J|2= t

2

[

(

1+cos2 θ
)

|GMp(t)|2+
1

τ
sin2 θ|GEp(t)|2

]

(17)

with the standard θ dependence of the differential cross-
section for e+ + e− → p + p [15], calculated in the frame
of the one-photon mechanism.
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After substituting t→ Q2 and cos θ2 → (1+ε)/ (1− ε)
in eq. (17), one can find the linear ε dependence for the
Rosenbluth formula for the differential cross-section of
elastic ep scattering in terms of |GEp|2 and |GMp|2 in Lab
system.
In the same way one can find the two-component spin

structure for the A3-contribution to the matrix element
for e+ + e− → p+ p, using eq. (4):

u(−k2)P̂u(k1)u(p2)K̂u(−p1) = LN , (18)

L = m

2

√

t(τ − 1)φ†2
(

σ · p̂− cos θσ · k̂
)

φ1 , (19)

N = − t
2
χ†2

(

σ · k̂− cos θσ · p̂+ 1√
τ
cos θσ · p̂

)

χ1 .(20)

The corresponding interference term (between theM1

and A3 contributions) can be written as

L · JL∗N ∗ ' Re
[

GM (t)−
1

τ
GE(t)

]

cos θ sin2 θ, (21)

i.e. with a specific θ dependence. Applying again the cross-
ing symmetry, this θ dependence (from the interference
term) generates a definite ε dependence of the correspond-
ing contribution to the differential cross-section of the ep
scattering in Lab system:

1γ ⊗ 2γ ' 2ε

1− ε

√

1 + ε

1− ε
, (22)

which is essentially non-linear, in contrast with the as-
sumptions done in [12,16]. These assumptions mean that
the function xf(x2), with evident x-odd behavior, could
be approximated by an x-independent constant, again in
contradiction with the C-invariance of hadronic electro-
magnetic interaction and with crossing symmetry.
Let us discuss now how unique is the cos θ sin2 θ depen-

dence for e+ + e− → p+ p. One can show, on the basis of
eqs. (19) and (20), that the corresponding spin structure
arises from a definite superposition of states of the inter-
mediate 2γ-system (in the reaction e++e− → 2γ → p+p)
with quantum numbers J P = 1+ and 2+, when the
e+e−-system has S = ` = 1. The individual states have
different structures:

J P =1+, `=1−→cos θReGM (t),

J P =2+, `=1−→cos θ
[

ReGM (t)+sin
2 θ
1

τ
ReGE(t)

]

.

Note that the simplest linear cos θ dependence corre-
sponds to the exchange by the axial state with J P = 1+,
` = S = 1. It is therefore possible to use, for the dis-
cussion of interference phenomena instead of (4), another
equivalent parametrization of 2γ-exchange [17]:

M2 ' Ã3

(

s,Q2
)

u(k2)γµγ5u(k1)u(p2)γµγ5u(p1).

Polarization phenomena for elastic ep scattering induced
by such parametrization have been analyzed in [18].

4 Conclusions

The general symmetry properties of electromagnetic inter-
action, such as the C-invariance and the crossing symme-
try, allow to obtain rigorous results concerning two-photon
exchange contributions for elastic eN scattering and to an-
alyze the effects of this mechanism in eN phenomenology.
The form factors GEN (Q

2) and GMN (Q
2) and the 2γ-

amplitudes, A3(s,Q
2) and ∆A1,2(s,Q

2) are the same for
e+p and e−p elastic scattering. This allows to prove that
the sum of the differential cross-sections for e±p inter-
action has the standard Rosenbluth dependence on the
nucleon form factors.
The ε dependence of the interference contribution to

the differential cross-section of e±p elastic scattering is
very particular. Any approximation of this term by a lin-
ear function in the variable ε is in contradiction with
C-invariance and crossing symmetry of the electromag-
netic interaction.
The formal expression of the ε dependence of the in-

terference contribution depends on the quantum numbers
of the 2γ-system.
To have a quantitative estimation of the relative role

of two-photon physics in eN interaction, it is necessary to
measure the differential cross-section of eN elastic scat-
tering for several ε values at a fixed Q2, and to study this
behavior in terms of the specific variable

√

(1 + ε)/(1− ε).
This will be the unambiguous signature of two-photon
contributions. A similar analysis can be done for polar-
ization phenomena [19].

We thank N. Kochelev, J. Arrington and L. Pentchev for a care-
ful reading of the manuscript and for pointing out misprints
along the paper.
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